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Electrostatic response - warm

magnetized plasma |2-12-17

Initialization: Be sure the file NTGUItilityFunctions.m is in the same directory as that from which this
notebook was loaded. Then execute the cell immediately below by mousing left on the cell bar to the
right of that cell and then typing “shift” + “enter”. Respond “Yes” in response to the query to evaluate
initialization cells.

SetDirectory[NotebookDirectory[]];
(* set directory where source files are located =x)
Get ["NTGUtilityFunctions.m"]; (* Load utilities package x)

This notebook differs from earlier dates notebook in that the StyleSheet information has already been
embedded in the notebook.

Purpose

| use Mathematica to derive the electrostatic response of a warm magnetized plasma. This is a classic
calculation in plasma physics and treatments can be found in many texts. For example,

Princip/es of Plasma Physics, N. A. Krall and A. W. Trivelpiece. Nick Krall, some ten years after | studied plasma
physics in graduate school using this text, became my boss as well as a lifelong mentor and friend.

Turbulent Transport in Magnetized Plasmas, Wendell Horton. wendell Horton was my PhD thesis advisor at the

University of Texas. This book is magisterial and describes a lifetime of productive work in plasma theory.
Fundamentals of Plasma Physics, Paul M. Bellan. Good plasma text available online.

Plasma Physics, Richard Fitzpatrick. Good plasma text available online.

Online series of lectures on plasma physics, J. D. Callen. These lectures are excellent. Jim Callen’s papers and talks

have always been comprehensive and very clear. Lecture 23A covers material relevant to the calculations in this notebook.
https://www.youtube.com/watch?v=4XGwiOgTfic&list=PL1FcfKGHsyMhfKegznP0i7e0804Z5YBdm&index=45

The calculation of the linearized response in plasma kinetic theory is rather involved. A plasma equilib-
rium is assumed and then perturbed. The key quantity of interest is a perturbed distribution function
of(x, v, t) from which the perturbed plasma density and current density may be calculated. The per-
turbed distribution is obtained by solving a 7-dimensional PDE by the method of characteristics. Opera-
tionally, the solution involves evaluating a so-called orbit integral. Then follow three velocity space
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integrations. Lots of algebra and calculus steps are involved and some special functions must be
manipulated. For a basic magnetized plasma equilibrium, the electrostatic case is quite doable but the
electromagnetic case is onerous with many chances to make an error. For more complicated plasma
equilibria, lots of painstaking calculations are required just to get to the starting point from which analy-
sis can proceed. | comment in the conclusions as to how such calculations first led me to use computa-
tional symbolic manipulation.

My intent in this notebook is to demonstrate that Mathematica can be used to facilitate this basic
plasma kinetic theory calculation. | focus on details of the calculation and do not discuss the underlying
physics in any detail.

| Background

The plasma model is a warm homogeneous plasma embedded in a uniform magnetic field.

Equilibrium plasma geometry

N
k = kxex+kye, +kze,

Figure 1) Problem geometry — homogeneous plasma in uniform magnetic field.

Under plasma kinetic theory, the plasma density and current density density are defined in terms of a
distribution function f(x, v, f) which satisfies the Vlasov equation (aka the collisionless Boltzmann
equation).

For practical applications, this equation is solved approximately by perturbing about some time-station-
ary equilibrium state — f(x, v, t) = fo(x, v) + 6f(x, v, t). The linearized Vlasov equation is

dof(x, v, t)  9of(x, v, 1)
d ot

+v-Vof(x, v, t) + a-V,fo(x, v) =0 (1)
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This PDE is solved using the method of characteristics. Here, v and a are the velocity and acceleration

of a particle under the Lorentz force.

In the specific derivation of the plasma dielectric tensor that follows, | will consider a homogeneous

(2)

equilibrium plasma with a uniform magnetic field and zero equilibrium electric field. In that case, the

formal solution of the linearize Vlasov equation can be written

of(x, v, 1)) = —if (GE(X, u) + 1—v(u) x OB(x, u)|- Vi, fo(x, v)du
m J-e c

where the integration over time is to be taken along the equilibrium particle orbits.

After Fourier transforming the perturbed quantities (see any plasma text for details)

of(k, v, w) =

—if exp(ik-(x(u)-x(t)) - iw(u - t))(dE(k, w) + 1—v(u) x OB(k, w))~ Vvio(x, v)du
m J-e c

On introducing t = u - t, this becomes

5f(i€, v, w) S f expli k- (x(u) - x(t) - i w t)(éE(k, W) + () « GBIk, w))-vao(x, V) dT
m J-« C

©)

For the calculations in this notebook, | will consider the electrostatic approximation. In that case, the

electric field is expressed in terms of a potential and the electromagnetic contribution is neglected.

5f(;;, v, w) -2 Jﬂ exp(ik-(x(u) - x(1) - iw 1) (-VO(k, w))- Vvlo(x, v)dT
nm J-c
B L Jﬁ exp(ik-(x(u) - x(f)) - iw1) - iwt|k- Vyfo(x, v)dT
m —o0

Once an explicit expression for 6f(k, v, w) is obtained, the perturbed plasma density can be calculated

according to

én(k, w) = [d%éf(i(’, v, w)

This density can then be used in Poisson’s equation to close the calculation.

V- 6E(k, w) = -V26D(k, w) = k? 6Dk, w) = 4 11(q; dni(k, w) + e ONe(k, w))

(8)

In this last equation, | have assumed that the model plasma has an ion and an electron specie. For the

majority of the calculation | will omit subscripts identifying plasma specie.
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2 Mathematical preliminaries

| have to perform a number of integrations. Instead of using Mathematica’s Integrate function, which
has certain automatic evaluation properties, | will define my own integration operator I, which will afford
me the opportunity to delay evaluation and manipulate expressions as desired. For similar reasons, |
will occasionally use Ex instead of Mathematica’s Exp.

(* An integration operator for convenience x)
Clear[I1];

(» move constant factors outside the operator =x)
I[x_]J[a_b_] /; FreeQ[a, x] := aI[x][b];

(* distribute sums x)

I[x_J[a_+ b_] := r[x][a] + I'[x][b];

(* An exponential operator for convenience =x)
Clear[Ex];

(*» A tool for circumventing the automatic simplications of Exp =x)
Ex[a_ + b_] := Ex[a] Ex[b]

Some parameters used in the calculation

B
def[wc] = wc = q—; (» cyclotron frequency =x)
mc
4 7 no g2
def[wp] = wp = —— ; (* plasma frequency x)
m
2T .
def[vth] = vth == — ; (% thermal velocity =)
m

def[a] = a == kp vth/wc; (» normalized perpendicular wave vector x)
w - nwc

def[Z[n]] = E[n] = —";(* phase velocity along field line x)
kz vth

Maxwellian distribution used for calculations in this notebook.

fro(?) = m0 (=) exp( _ M)

2Tt 2T
9
( 1 )3/2 ( (Vf + vﬁ)] 9)
=no|——| exp|-——
"Vtzh Vt2h

. . vperp?  vpel?
ruleMaxwellian = f, - Function[{vperp, vpel}, [-

————— Exp +
(e vth?) 52 vth? vth?

Convenience definition
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1 a2 a2
def[#313] = HII[n, a] = —Exp[- —] BesselI[n, —]
2 2 2

1 2 a2
#1J[n, a] = —e 2 BesselI[n, —|
2 2

3 Orbit integral

In this section, the orbit integral (6) is evaluated.

W3[1] = 6f[k, w] = - 1°%LKs @]
m
T[] [Exp[IDot[{kx, ky, kz}, {(x[t]-x[tl), (y[z]l-yI[t]), (z[c]-2[t])}] -Twt]

Dot[-I {kx, ky, kz} , gradv[fe[c]]]]

1
of [k, w] = -—q o2k, w]
m
Ilt] [e—jtwﬂi (kx (-x[t]+x[t])+ky (-y[t]+y[t])+kz (-z[t]+z[T])) (-1 kx, -1 ky, i kz}.gr‘adv[fe[t}]}

Because of the symmetry of the problem the wave vector can be freely oriented with respect to the
magnetic field. So | will immediately simplify this expression by choosing

w3[2] = w3[1] /. {kx - kp, ky » 0}

of[k, w] =

1 L
-=qéa[k, w] I[t][etrert (ke xitixiel)ka (zlt]sz[t]) (_j kp, @, -1 kz}.gradv[fe[T]]]
m

where kp will denote the perpendicular component of the wave vector.

Also guided by symmetry, | choose an equilibrium distribution depending only on components perpendic-
ular and parallel to the magnetic field.

w3[3] =

gradv[fe[t]] == Gr‘ad[-l:g,[\/vx[r_]2 +vy[z]?, vz[z]], {vx[z], vy[z], vz[t]}] /.
{’\/VX['E]Z +vy[t]? - vp, vz[t] > vz, 1/'\/VX['C]2 +vy[z]? - 1/vp}

VX fo 19 [vp, vZ] Vv fo (129 [vp, vz
gradv[fo[c]] = { [t] fe [vp ] , ylt] te [vp ] , 0% [vp, vz]}
vp vp

where vp denotes the component of velocity perpendicular to the magnetic field. | have also used the
fact that the perpendicular and parallel components of the velocity are constants of motion for this
plasma model.
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w3[4] = w3[2] /. (w3[3] // ER)

1
5f[k, w] = -—q&2[k, w] I'[t]]
m
e—izwﬂ'l (kp (-x[t]+x[t])+kz (-z[t]+z[T])) _ikz .Fe(a,n [Vp, VZ] _ ij kp VX[t} .F0<1,a) [Vp, VZ] }
vp

On expanding the previous expression the properties of the operator I[t][arg] are such as to move all
non t dependent terms outsider the operator.

w3[5] = w3[4] // ExpandAll

5'F[k, w] = l]l qué@[k, w] I'[t] [e—jtw—]’lkpx[t]H'Lkpx[t}—ikzz[t]+1’1kzz[t]] .Fe(a,l) [vp, vZ] +
m

i kpqé@[k, w] I[t] {e—ﬁtw—ikpx[t]ﬂ'lkpx[t]—ﬁkzz[t]ﬂikzz[t] VX['C]] .Fe(l,e) [vp, vZ]
mvp

There are two orbit integrals of interest

w3[6] = Union@ExtractDependentTerms[w3[5][2], t];
w3[6] // ColumnForm

I[t] [e—itm—ﬁkpx[t]+1‘1kpx[t]fjkzz[t]qkzz[t]}

Ilt] [e—ﬁtw—j kpx[tl+ikpx[t]-ikzz[t]+ikzz[t] vX[T] ]

In Appendix A, the orbits for plasma particle motion in a uniform magnetic field are calculated — wA[“or-
bitRules”]

vx[t] > vpCos[¢p-twc]

vy[t] > vpSin[¢ - T wc]

vz[t] - vz

X['E] 5 vpSin[¢] _ vpSin[¢-t wc] +X[t]
wC wC

wc wC

y[t] N _vpCos[dﬂ + vp Cos [p-T wc] +y[t}
z[t] »vzT+2z[t]

In Appendix B, the orbit integrals are evaluated. Not surprisingly for a problem involving cylindrical
symmetry, Bessel functions are involved.

wB["orbit integral rules"]

{I[t] [e—jtw—ikpx[t]ﬂikpx[t]—ikzz[t]+1’1kzz[t]] N

- [T—Zp}Jn[ﬁ—:p})/(kzvz—ernwc)

I[t] {e—jtw—ikpx[t]ﬂlkpx[t]—ﬂkzz[t]ﬂikzz[t] VX['C]} N

95 2] / (kg (kava-enoe)) |

ielmmoy, ,

iel "¢ ue Jm[

On application of these rules, the perturbed distribution function becomes
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w3[7] = w3[5] /. wB["orbit integral rules"]

6Fk, w] =
el " k7 q 58k, w] JM[M 3, M] fo (@1 [vp, vz] / (m (kzvz-w+nwc)) +
we we
el " 9 g nwe 58k, w] JW[M} JH[M} fo 29 [vp, vz] / (mvp (kzvz -w+nwc))
we we

For such expressions, | invoke the convention that the appearance of an index m or n in an expression
implies an infinite sum over that index.

For a Maxwellian equilibrium distribution

ruleMaxwellian

2 2
no Exp[— vperp n vpel ]
vth? vth?

fo > Function| {vperp, vpel},

]

(7 vth?)

w3[8] = w3[7] /. ruleMaxwellian

6f [k, w] = - 2@ o 9 kg ne qvz 63 [k, w] Jm{ikpvp] Jn[ikpvp] /
wc wC
<m7T3/2 (vthz)‘r’/2 (kz vz—w+nwc)) -
vt vz +1 (m-n) ¢ kp vp kp vp
2e v v N0 qnwc 68 [k, w] I, ] 3. ] /
wc wC

(mn3/2 (vthz)'r’/2 (kz vz —w+nwc))

It is convenient to introduce dimensionless integration variables

W3[9] = W3[8] [[1]] ==
(w3[8][[2]] /. {vp » Vpvth, vz » vVzvth} /. Sol[def[a], kp]) // PowerExpand
SFK, w] = 7((2 e VPP VZ L (mn) 6 k7 ne qVz 58 [k, w] I, [aVp] I,[a Vp])/
(m73/% vth? (kzvtth—w+nwc))) -

(2 e VPP V2Pl (m) ¢ ng q nwe 68 [k, w] I, [aVp] I,[aVp] ) / (m3/2vth® (kzvthVz - w+nwc))

w3 ["perturbed distribution function"] =
5F[k, w] = - ((z @ VPP-VZi+i (m-m) 6 k7 n@ qVz 68 [k, w] I,,[aVp] I,[a Vp])/
(m7r3/2vth4 (kzvtth—w+nwc))) =
(2 @ VP*VZ+i (m-m) 6 ng q n we 68 [k, w] I, [aVp] I,[a Vp])/

(m73/2vth® (kzvthVz -w+noc));
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4 Calculation of perturbed charge density

The perturbed charge density is defined by

op(k, w fd%éf(k f do r vp dvp r dvz 6f(k
T

= gvth® f do r Vp dVp F dVvz 6f(k, w)
0 0 —c0

Anticipating that the charge density will ultimately be used in Poisson’s equation, it is convenient to
calculate 4 1t 6p

(10)

wa[1l] = 4nqéflk, w] == 4wrqw3[9][[2] // Expand

4rqofik, w] = - ( (8 e VPPVl (mm 6 7 np g2 vz 3 [k, w] I,[aVp] I, [a VpJ)/
(m\/;v‘ch4 (kzvtth—w+nwc))) -

(8 e VPP VZL (m) 6 ng g2y e 58 [k, w] I, [aVp] Jn[an])/(mﬁvthS (kz vth Vz—w+nwc))

Introduce some common plasma parameters

wa[2]
wa[2]

w4[1l] /. Sol[def[wp], nO@];
MapEqn [SimplifyTermByTerm, w4[2]]

47qoflk, w] ==
—((2 e VP’ V2l (mm) ¢ k7 vz wp? S8 [k, w] I.[aVp] I,[a Vp])/(ﬁ’/2 vth* (kz vth Vz—w+nwc))) -

(2 e VPVZL (mm) 6 e yp? S8 [k, w] I,[aVp] I,[a Vp])/<ﬂ3/2 vth® (kzvthVz - w+ nwc) )

wa[3] = wa[2] /.
(1/ (kzvthVz-w+nwc) - Factor[1/ (kzvthVz-w+nwc) /. Sol[def[E[n]], wl])

47q6fk, ] =
—((2 e VP’ VZ i (mm) bz yp? 53k, w] I,,[aVp] I,[aVp] )/ 32 vth® (Vz - E[n ]))) -

(2e*VP2*VZZ+i (=1 ¢ e wp? 68 [k, w] I, [aVp] I,[aVp] )/ (kz 732 vth® (Vz - £[n]))

Now construct the triple velocity integral
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wa[4] =4 Sp[k, w] == I[¢][Z7[Vp][ T[Vz][Vpvth® wa[3][2]]]] /-
Power[E, a_] - Ex[a] // ExpandAll

4ok, w] =
Ex|[-Vz?]
-||2nwcwp® 62k, w] I[Vp] [Vp Ex[-Vp?] 3, [aVp] I, [aVp]| T[Vz]|———] I[0]]
Vz - C[n]
Ex[imae] EX[JinCDH]/ (kZﬂ3/2vth3> -
Vz Ex[—VzZ]
2wp? 521k, w] I'[Vp] [VpEx[-Vp?| I, [aVp] I, [aVp]]| I [Vz] [——]
Vz - C[n]

I[¢] [EX[1imo] Ex[—jmz)]]]/ (732 vth?)

w4[5] = w4[4] /. Ex -» Exp;
w4[5] = MapEqn[SimplifyTermByTerm, w4[5] ]
4r16p[k, w] =

-vz?
2 nwe wp? 63 [k, w] T[Vp] [e*?’ Vp 3, [aVp] 3,(aVp] | T[Vz] [———] 7[¢] [l " ¢]]/
n]

Vz - ¢

(kz 7372 vth3)

-vz?
2wp? 53 [k, w] I[Vp] [e P VpI,[aVp] I,[aVp]]| I [Vz] [g} 7(¢] et 2] J/
]

<7T3/2 Vth2>

Notice that the use of the special operators I and Ex have automatically isolated the three velocity
space integrals.

The ¢ integral can be performed immediately using the rule

wa[6] = wa[5] /. I[¢][e* " ?] 5 2x6K[m, n]

4r16p[k, w] =
s ‘E—Vz2
- | |4nwcwp? sK[m, n] 63k, w] T[Vp] [e¥P"VpI,[aVp] J,[aVp]] I[Vz] []]/
Vz - C[n]
(kZ\/?vthE‘) -
5 fVZZV
40p? 5K [, ] 521k, w] T (V] [&% Vp 3, [aVp] 3,1avp] | rvzl [ -] | / (Vi ven?)
Vz - C[n]

where 6K represents a Kronecker 6-function.

Sum over the (implicit) index m
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w4[7] = wa[6] /. a_o6K[m, n] =» (a /. m > n)

4r6p[k, w] =
-vz?
- |4nwcwp?s8[k, w] T[Vp] [e*VPZ VpJ,[aVp]?] I[vz] [L}J/ (kzx/?vth3) -
Vz - C[n]
N eV’ vz
4wp? 5[k, w] 7[Vp] [e P VpI,[avp]?] rivz][———] / (ﬁvthz)
Vz - C[n]
In Appendix C, a rule is derived for the Vp integral
VpIntegral
2 1 2 az
I[Vp][e“"" VpJ,[aVp]?| > ~ e 2 BesselI[n, —|
2 2
Thus,
w4[8] = w4[7] /. VpIntegral
4r6plk, w] =
a2 e-sz

2e s nuc wp?Bessell[n, —| 63[k, w] 7[Vz] [}]/ (kZ\/?vtm)
2 Vz - C[n]

a2 2
2e 2 wp?Bessell|[n, a—} selk, w] I[Vz]|
2 Vz - € [n]

2
eV vz

]

// (VG;_Vch)

The Vz integrals are

_vz2 —szv
Wa[9] = {I[Vz][vze_m], I[Vz][ﬁ]}

2 2
e—Vz e—Vz Vz

> vl [———}

{rvz] [ ———
Vz - ¢[n] Vz - L [n]

Rules for their evaluation are derived in Appendix D

VPelRules

2
e—Vz

7VZZV
[rve) [———] >V z(gln ), TV2) [————] > 7 (1+2Z(E0n1] Elm))
Vz - C[n] Vz - L [n]

where Z({(n)) is the plasma dispersion function
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w4[10] = w4[8] /. VPelRules

a? aZ
2e 2 nwcwp?Bessell[n, —| Z[C[n]] 63 (K, w]
2

dr6plk, w] = -

/(kzvth3)] .

K a2
2e 2 wp?Bessell[n, —| 6a[k, w] (1+Z[E[n]] C[n])
vth? 2

I make use of a simplifying definition

def[#3J]

1 = a?
#IJ[n, a] = —e 2 BesselI[n, — |
2 2

2
w4[11] = w4[10] /. Sol[def[#]]], Bessell[n, a'—]]
2

4réplk, w] = - ((4nwcwp*Z[L(n]] HII[n, a] 58[k, w]) / (kzvth?)) -

th24wp2mJ[n, a) 63k, w] (1+2Z[C[n]] C[n])
\"

In this expression, two kinetic theory effects are present — finite Larmor radius effects are contained in
HJJ[n,a], and resonant particle effects are contained in Z[ ¢, ].

w4 ["perturbed charge density"] =
4nép[k, w] = - ((4nwcwp?Z[E[n]] HII[n, a] 68k, w]) / (kzvth?)) -

thz4wp2 HII[n, a] 63 [k, w] (1+Z[E[n]]ELn]);
Vv

This is the desired result. This expression is used in Poisson’s equation to generate a dispersion rela-
tion that can be used to study the waves propagating in a homogeneous magnetized plasma.

5 Cold plasma limit

I make a quick check of the charge density by taking the cold plasma limit T - 0. As T -» 0 the phase
velocity { becomes large. From Appendix D, the large argument approximation of the plasma dispersion
function is

Z[E[n]] - ZFcnLargeArgument[Z&[n]]

1 1
Z[g[n]] - - -
2¢([n]?  Cln]
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w5[1]
w5[1]

w4 ["perturbed charge density"] /. Z[Z[n]] - ZFcnLargeArgument[Z[nr]];
MapEqgn [SimplifyTermByTerm, w5[1]]

4n6p(k, w] =
2wp?HIJ[n, a] 63k, w]

vth? £[n]?

+ (2nwcwp?#II[n, a] 6@ [k, w] (1+2E[n1%)) / (kzvth?® c[n]?)

or

w5[2] = w5[1] /. Sol[def[Z[n]], E[n]]

2kz? wp?HII[n, a] sa[k, w]

4r6plk, w] = +
(w-nwc)?
5 2 (w-nwc)? 5 3
2kzcnwe |1+ ——— | wp“H3II [n, a] 63 [k, w] /(w—nwc)
kz2 vth?

Consider the low frequency limit

W5[3] = w5[2] /. n > ©

2kz? wp?H3IJ [0, a] 63 [k, w]

4r6p[k, w] =
w2

As T - 0 the Larmor radius becomes small, a << 1. From Appendix C

w5[4] = w5[3] /. H3IJ[0, a] » HIISmallArgument[0, a]

1 a 2,12
2(2 4) kz* wp® 5@ [k, w]

4150k, w] =
w2

Asvth-> 0 a-0

w5[5] = w5[4] /. a - ©

kz? wp? 63 [k, w]
2

4r15p[k, w] =
w

which is the expected result — only plasma oscillations along the field lines in a cold plasma.

6 Conclusions and extensions

From this point the development could proceed in various directions

° The expression w4[“perturbed charge density”] could be used in Poisson’s equation (8) and the
various waves associated with a magnetized warm plasma could be analyzed.
. The electromagnetic response could be calculated by foregoing the electrostatic approximation

and using equation (5) as the starting point. This would require calculating the perturbed current density
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%dj(k, w) for use in Maxwell’'s equations. The calculation would be analogous to that above, but

additional integrals would appear. | describe the cold plasma version of this calculation in notebook
Dielectric Tensor - Cold plasma 08-06-16.

° More general plasma equilibria could be considered. Of special interest are inhomogeneous
magnetized plasmas for which qualitatively new waves and instabilities arise.

By way of some personal history, it was the complexity of calculations in the last category that originally
led me to symbolic computing.

Circa 1974, | was working at Los Alamos National Laboratory. A guest speaker, Anthony Hearn, talked
to my group about his recently developed symbolic algebra system REDUCE — http://www.reduce-
algebra.com/reduce40.pdf. This talk convinced me that this emerging technology could facilitate the
kinetic plasma calculations | needed to perform and | began to apply REDUCE to my problems.

From REDUCE | migrated to another classic symbolic algebra system Macsyma - https://en.wikipedi-
a.org/wiki/Macsyma. Since Macsyma was only available at MIT, | had to access it remotely. | did this
using MILNET, which was a forerunner of the modern internet (https://en.wikipedia.org/wiki/MILNET). |
recall using a primitive text editor in which commands were terse and cryptic and involved special text
characters. Since | was using a Teletype machine that was noisy in both the auditory and signal process-
ing senses, it was sometimes difficult to distinguish the feedback of commands from line noise. In those
olden day days, user interfaces weren’t friendly, they were downright hostile.

After a few years, Macsyma led me to Mathematica which has become my daily working tool for over
twenty five years.

In this notebook | have used contemporary capabilities of Mathematica to make yet another pass at
plasma kinetic theory calculations.

Appendix A - Orbits

Particle orbits in a plasma with a uniform magnetic field B e,

The Lorentz force equations are

wA[1] =
Thread[D[{vx[t], vy[z], vz[t]}, t] == wcCross[{vx[t], vy[z], vz[t]}, {0, 0, 1}]]

{vxX'[t] ==wcvy[T], v [T] = —wcvx[tT], vZ'[T] == 0}

where wc is the cyclotron frequency.
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wA[2] = DSolve[Join[wA[1], {vx[@] = vx0, vy[O] == vy0Q, vz[O] == vz0}],
{vx[zl, vylz], vz[z]}, t][1]

{vx[t] »vx@Cos[twc] +vy@Sin[twc], vy[t] »vy@Cos[twc] -vx@Sin[twc], vz[T] - vz0O}

Take advantage of the cylindrical symmetry

WA[3] = wA[2] /. {vxO -» vpCos[¢], vy@ - vpSin[¢], vzO -» vz} // Simplify

{vx[t] »vpCos[¢p-Ttwc], vy[rt] »vpSin[¢p-twc], vz[Tt] > VvZ}

wA[4] =
Thread[{D[x[t], ], D[y[z], ], D[z[z], T]} == {vx[c]l, vy[c], vz[z]} /. WA[3]]

{xX'[t] =vpCos[¢p-Ttwc], y [t] =vpSin[¢-twc], z'[T] = vz}

WA[5] =
DSolve[Join[wA[4], {x[@] == x0, y[@] == y@, z[@] = z0}], {x[t], y[t], z[t]}, ]l
1] /. {x@ - x[t],y0 -» y[t], z@6 -» z[t]} // Simplify // Expand

vpSin[¢] vpSin[¢ - twc]

{xm - - +X[t],
wc wc
ylt] %_VpCOS[cb} + vpLos[é - T ue) +y[t], z[t] evzz+z[t]}
wc wC

WA[6] = Join[wA[3], WA[5]]

{vx[t] > vpCos[¢-twc], vy[tr] > vpSin[¢ - twc],
vpSin[¢] vpSin[¢ - twc]

vz[t] > vz, X[Tt] > - +x[t],
wC wC
ylz] L _VpCos(a]  vpCos[¢-ruc] vy[t], z[t] »vzr+z[t]}
wC wC

wA["orbitRules"] = {vx[t] - vpCos[¢- T wc],
vpSin[¢] vpSin[¢ - T wc]

vy[t] » vpSin[¢ - twc], vz[T] » vz, X[T] - +X[t],

wC wC
vp Cos [¢] . vp Cos[¢ - T wC]

ylz] - - +y[t], z[t] »vzT+2[t]};

wC wC
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wA["orbitRules"] // ColumnForm
vx[t] »vpCos[¢ - Twc]
vy[t] »vpSin[¢ - Tt wc]
vz[t] » vz
X[t] N vpSin[¢]  vpSin[¢-Twc] +X[t]
wC wC
_vpCos[d] vp Cos [¢p-T wc]
ylT] - - WLy RSty [ ]
z[t] »vzT+2z[t]

rewrite the orbits in a form better suited for numerical calculations.

temp[1l] = wA[5] /. {x[t] » x0, y[t] -» yO, z[t] » z0O}

vpSin[¢] vpSin[¢ - twc]

{X[t}eerr R

wcC wC
C C -

y[t]eye—vp OS[¢]+Vp os[® twc],z[t]920+VZt}
wC wC

Clear[OrbitAnalytical];

OrbitAnalytical[z_, wc_, vp_, ¢_,VvZ_, x0_, y0 , z0_] :=

vpSin[¢] vpSin[¢ - T wc] 0 vpCos[¢] vpCos[¢-rtuwc]
- P A +

{XO +

» 20+ vz T}
wce wc wce wc

| visualize the orbit for some nominal parameters.
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Module[{wc = 1, tMax = 40, vp = 1, ¢ = O, vz = 0.1,
X0 = 0, yo0 = 1, z0 = 9, range = {{-2, 2}, {-2, 2}, {0, 2}}, QArrow,
BVector, pointBeginning, pointEnd, backgroundPlot, orbitPlot, lab},
QArrow[vList_] := Arrow[Tube[vList]];
range = {{-2, 2}, {-2, 2}, {0, 1.1vz tMax}};
BVector = {Blue, QArrow[{{O, 0, O}, {0, 9, vz tMax}}]};
pointBeginning = {PointSize[©.015], Point[{x0@, y@, z0}],
Text[Stl["long ago"], {x@, yo, z0} + {0, 0, -0.10}]};
pointEnd = With[{xt = OrbitAnalytical[zMax, wc, vp, ¢, vz, x0, y0O, z0]},
{PointSize[0.015], Point[xt], Text[Stl["x(t)"], xt + {0, @, -0.10}]}];
backgroundPlot =
Graphics3D[ {BVector, pointBeginning, pointEnd}, PlotRange - range];
lab = Stl["example ion orbit"];
orbitPlot = ParametricPlot3D[OrbitAnalytical[t, wc, vp, ¢, vz, x0, y0, z0],
{t, 0, tMax}, AxesLabel -» {Stl["x"], Stl["y"], Stl["z"]},
PlotStyle » Red, PlotRange - range, PlotLabel - 1lab];
Show[ {orbitPlot, backgroundPlot}]]

example ion orbit
2

The plasma particle motion is circular in the plane perpendicular to the magnetic field. The velocity
parallel to the field lines is constant. Note that v, is also a constant of the motion.
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Appendix B Explicit forms for the various orbit integrals

In the main line calculation, specific orbit integrals were encountered — w3[6]

WB[l] = {I[t] [e-irw—ikpx[t]+1‘1kpx[t]-1‘1kzz[t]+1'1kzz[1:]]’
I'[t] [e-itw—ikpx[t]+ikpx[t]—ikzz[t]+ikzz[t] VX['C]]};

wB[1] // ColumnForm

I[t] [e—itm—ﬁkpx[t]ﬂ'lkpx[ﬂ—jkzz[t]ulkzz[z]}

I[t] [e—itw—j kpx[t]+ikpx[t]-1kzz[t]+ikzz[T] vX[T] ]

and, in Appendix A, the particle orbits in a uniform magnetic field were calculated — wA[*orbitRules”]

wA["orbitRules"]

{vx[t] >vpCos[¢-Twc], vy[r] > vpSin[¢-twc],
vpSin[¢] vpSin[¢ - Tt wc]

vz[t] - vz, X[t] - - +X[t],
wc wce
ylt] %7vpCos[¢} + vpCos[o - T uc) +y[t], z[t] »v2t+z[t]}
we wc

Consider the argument of the first integral

wB1 [1] = e—itw—ikpx[t]ni kpx[t]-i1 kzz[t]+ikzz[t]

e—i tw-1 kpx[t]+ikpx[t]-ikzz[t]+ikzz[t]

Introduce the orbits

wB1[2] = wB1[1] /. wA["orbitRules"] // ExpandAll

) . i kpvpsin| i kp vp Sin[¢-t we
ikzvz o-i T e KPYPSINIOL  1kpvpSin(g !

we we

The key to evaluating these integrals is the use of the Bessel identity

exp(+i asin(h)) = Z J,(a) exp(xi b)

m=—oo

To facilitate the application of rules | artificially expand the exponential function

wB1[3] = wB1[2] /. Power[E, a_] - Ex[a]

[jkpvpsin[cb} } Ex[ijkpvpsin[du—twc] }

Ex[1 kzvzt] Ex[-1 tw] Ex
wce wc
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wB1[4] = wB1[3] /. Ex[a_Sin[¢]] » IJ,[Abs[a/I]]1EX[Ime] /.
Ex[a_Sin[¢-twc]] » J,[Abs[a/I]] EX[-In (¢-twc)]

PR 3, [abs [P

Ex[ikzvzt] Ex[im@] EX[-itw] EX[-1in (¢ - Twc)] I, [Abs

or, in standard Mathematica notation

wB1[5] = wB1[4] /. Ex -» Exp // Simplify[#, {kp > ©, vp > @0, wc > 0}] &

e]'l (kz vz T+m ¢p-n ¢p-T w+n T wC) Jm[ kp vp ] Jn[ kp Vp}

wC wC

For such expressions, | will use the convention that the appearance of an index m or n in an expression
implies an infinite sum over that index

The rule for the first orbit integral is

wB1[6] = Thread[wBl1[1] - wB1[5]]

oo . . ‘ ; kp vp kp vp
e lrw-t kpx[t]+ikpx[t]-ikzz[t]+ikzz[T] el (Kz vz T+m p-n¢-T w+n T wC) Jm[ } Jn[ ]
wC wC
Consider the second orbit integral
wB2[1] = e—irw—ikpx[t]+1‘1kpx[r]—1‘1kzz[t]+1'1kzz[1:] vx[t]
e—]i'Ew—]ikp)([‘t]+]ikpX[t]—ijZ[t]+1kZZ[t] VX[I}

Take advantage of previous work

wB2[2] = wB1[5] vx[t] /. WA["orbitRules"]

kpvp] . [kpvp}
wc " wc

e]i (kz vz T+m ¢p-n -t w+n T wC) vp cos [¢ - T wc] Jm[

wB2[3] = wB2[2] // TrigToExp // ExpandAll

l eJ‘L kzvz t+i ¢p+imop-inop-1 T w-1 TwC+1nTwC vp Jm { kp vp J” kp vp ] +
2 wC wC

l ejkzvzz—iq>+jm¢—jn¢—i T W+l Twc+intwc vp Jm[ kp Vp] Jﬂ[ kp Vp}
2 wC wC

| am free to change the dummy summation index

wB2[4] = (wB2[3][1] /. n » n+1) + (wB2[3][2] /. n » n-1) // ExpandAll // Factor

k k
e [ ] 3y, [P

ikzvzorimep-ing-itw+intwc vp Jm[ kp vp ]
2 wC wC wC
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Take advantage of the Bessel identities

Recurrence relations [edit]

The functions Jg, Yq, Ho(", and H,@) all satisfy the recurrence relations:[4°!

2a

?Za (17) = Za—l (33) + ZO(+1 (:1:)
dZ,

272 _ 7, \(@) - Zun(e)

where Z denotes J, Y, HY, or H@). (These two identities are often combined, e.g. added or subtracted, to yield various other

wB2[5] = wB2[4] /. J—1+n[a_] - -Ji..[a] + z_njn[a]
a

1

eJ‘L kzvz t+imp-in¢-1i Tt w+intwc

ncd, [ PYR) 5 (KRR
kp wc wC

Then

wB2[6] = Thread[wB2[1] - wB2[5]]

e -

-itw-1kpx[t]+ikpx[t]-ikzz[t]+ikzz[T] VX[E}
kp vp
e =]

ikzvzt+imep-ing-i twﬂimtwc”wc Jm[M] J
kp wC wce

The original orbit integrals become

wB[2] = wB[1] /. wB2[6] /. WB1[6]

kp vp kp vp ‘
Jm Jrr T 1 (kzvz t+m¢p-n¢-t w+n T wC)
(3, [F222] 2, 2% 1) e |

inwc Jm[ kpvp] Jn[ kpvp] 7t {eikzvzzﬂima—ind)—izwﬂlntwc}}
kp wC wC

B

Now the time integration may be performed

wB[3] = wB[2] /. I[t][a_] :» Integrate[a, {T, -, 0}]

kp vp kp vp
J3.[=—]
wc we
Im[kzvz-w+nwc] < @], ConditionalExpression|

_( kpvp}J”{kpvp}

wC wC
In plasma normal mode theory it is assumed that w has a small positive imaginary part so that the
mode grows up out of initial initial noise. See one of the referenced plasma texts for discussion of this
important point, as well as discussion of its formal justification using Laplace transforms.

{ConditionalExpression [~ | [iet e, [

/(kzvz—w+nwc)

B

iel "¢ nue Jm[

/(kp (kzvz—w+nwc))), Im(kzvz-w+nwc] < 0]}
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wB[4] =

Simplify[wB[3], Assumptions -» {Im[kzvz-w+nwc] <0}]
i el (M-ﬂ)aﬁjm[@_VE] J [@_VE}

n
{ wC wC

kzvz - w+nwc

)

Lot 7 ¢ e 3, [SRYR] 5 (KRR

wC wC

/(kp (kzvz-w+nwc)) |}

The orbit integrals are

WB[5] = Thread[wB[1] - wB[4]]

{I[t} [efj tmfikpx[t]ﬂikpx[t]—ikzz[t]+1‘1kzz[t]] N

_( i el (mw)mm[M} jn{kpﬂ})/ (kzvz -+ nwc)
wC wC

I[t] [e—jtw—ikpx[t]+1’1kpx[t]—ikzz[t]+1’1kzz[t] VX['C]} N
, kp v kp v
iet mn o e, [P g, [ PR

( B0, [ )/(kp(kzvz—w+nwc))]}

)

wB["orbit integral rules"] =
{I[t] [e—irw—ikpx[t]+1‘1kpx[r]—ikzz[t]+1‘1kzz[r]] -

_((iei (m-nmjm[kp"p] JH[kp"p]

— — )/(kzvz—w+nwc)),

I[t] [e-itw-ikpx[t]+ikpx[t]—ikzz[t]+1‘1kzz[r] VX['C]] -

‘((iei(m'")¢nwcjm[kpvP] 3 [kPVP]

” n w_c ]/(kp (kzvz—w+nwc)))};

Appendix C Perpendicular velocity integrals

The Vp integral encountered in the main calculation is

wC[1] = 1[Vp][e™"' VpI,[aVp]?]

7[Vp] [eVP Vp3,[aVp]?]

This can be rewritten

wC[2] =

wC[1] /. J,[aVp] -» Bessell[n, aVp]

I[Vp] [e"’pz Vp Bessell[n, aVp]?]

Mathematica can perform this integral
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wC[3] = Integr‘ate[«a""’Z VpBessell[n, aVpl?, {Vp, @, =}, Assumptions -» {a > @, n > 0}]
1 2 a?

~e 2 BesselI[n, —]

2

2

A rule for this integral is

VpIntegral = wC[1] -» wC[3]

2 1 2 2
I[Vp] e VpJ,[aVp]?| > ~ e 2 BesselI|n, 2

2 2

—

wC[1l] » wC[3]

a2 2
I1Vp] [e VP Vp 3, [aVp1?] 5 = e & Bessell[n, -]
2

2

1 =2 a2
VpIntegral = I'[Vp] [e'sz VpJ,[aVp]?] » — e = BesselI|n,
2

20’

| can also represent this in terms of a convenience function HJJ

a2
wC[4] = VpIntegral /. Sol[def[#]]], Bessell[n, —]]
2

7{vp] [eVP VpI,(aVp]?] - HIT[n, a]

It is useful to know how the function behaves at low plasma temperatures. As T -0, vth » 0, a -0, so
wC[5] =

NormaleSeries[wC[3], {a, @, 2}, Assumptions -» {a € Reals, a > 0}]

. 27172»4 27272»4 a2
a

Gamma [1 + n] Gamma [1 + n]

| can define a function for the small argument limit

Clear [#3JJSmallArgument];
#3JISmallArgument [index_, a_]

Module[{n = Abs[index]},
2—1—2n

-2-2n 52
o 2 a
a

Gamma [1 + n] ) Gamma [1 + n] ]

Why the Abs[index]? Besseld[n, arg] is antisymmetric with respect to n. For example
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04}

0.2

-0.2

—0.4

Module[{a = 1},
Plot[{Bessell[5, aVp], Bessell[-5, aVp]l},
PlotLegends —» {"BesselJ[5, a Vp]", "BesselJ[-5, a Vp]"}]]

{Vp, 0, 10}, PlotStyle - {Black, Blue},

— BesselJ[5, a Vp]

— BesselJ[-5, a Vp]

But it is BesselJ[n, arg]? that appears in the integrand. Thus #JJ is symmetric with respect to n.

Module[ {info},
info = Table[{n, #JJSmallArgument([n, al}, {n, -2, 2}];
PrependTo[info, {"n", "#3JJ[n,al"}1;

LGrid[info, "small argument expansions"]]

small argument expansions

n | HIJ[n,a]
2
-2 |a* 51_4_ :;)
1 2
-1| a? (;— :—6
1 2
of z-T
1 2
1| a? (;— :—6
1 2
2 |a* (-1

| perform a test by comparing the n = 0 small argument expansion against a direct numerical integration

of the original BesselJ form.

| define a test by directly integrating the BesselJ form

Clear [VpIntegralTest];
VpIntegralTest[n_, a_]

NIntegr‘ate[ue“’pZ VpBessell[n, aVpl?, {Vp, 0, o}]
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Module[{n = @, resultsNumerical},

resultsNumerical = Table[{a, VpIntegralTest[n, al]}, {a, 0, 1, 0.1}];
Plot [#3JJSmallArgument[n, a], {a, 0, 1},

Epilog » {OC[#, Black] & /@ resultsNumerical}]]

0.45]
0.40[

0.35]

Appendix D Parallel velocity integrals

The unique V, integrals are

-vz?

e e V? vz
pD[1] = {rivz][——1, rvzj[—
wD[1] = {I] z][vz_g[n]] [ z][vz_g[n]]}

e—sz erZZVZ
I[vz]|——|, r[vz] | ——
o Z][Vz—ém] [ Z][Vz—c[m”

| want to make use of the identities

I R

f 2z = x4z

ooz—é’

2 -7
rze{dz =z ¢a + ¢z12)
oz -

where Z(() is the plasma dispersion function. This function is important in plasma physics — it encapsu-
lates the physics of resonant particle-wave interactions. See one of the referenced texts for discussion
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wp[2] = {Vm z[g[n]], Y (1+E[n]Z[E[A11)}

(Nrzign ), Vn (1+218[n)] €[n])}

VPelRules = Thread[wD[1] - wD[2]]

7VZV
[rve) [———] >V z(gln ), TV2) [————] > x (1+2Z(E0n1] Elm))

VPelRules =
-vz?

—VZZV
{rEvz] [———] = Vi Z[E[n1], T[V2] [———] » V= (1+2Z[E[n1] ELn1)};
Vz - g[n] Vz - Z[n]

A convenient Mathematica representation for the Z-function is

Clear[ZFcn];
ZFen[E ] := I V:FExp[—gz]Erfc[—Ig]

It is useful to know how the function behaves at low plasma temperatures. As T -0, vth - 0, { 50, SO

wD[3] = Normal@Series[ZFcn[&[n]], {&[n], o, 4}] // Expand

2ietlltym o+ 1
2c(n)® gln]

Neglect the exponentially small first term

wD[4] = Drop[wD[3], 1]

1 1

2¢[n1®  Cln]

Clear[ZFcnLargeArgument] ;

1 1
ZFcnLargeArgument [E[n]] := - -

2g[n1®  gln]

Visualization

The magnetized plasma geometry and wave vector
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Module[{o, ex, ey, ez, Bvec, kVec, axes, offset, T, Vec, G = Graphics3D},
T[text_, position_] := Text[Style[text, Bold, FontSize - 10], position];
Vec[vec_] := {Arrowheads[0.05], Arrow[Tube[vec, 0.02]]};

{0.’ eXJ ey) ez} = {{01 01 0}) {1) 0) 0}.’ {01 1.’ O}J {01 01 1}}.;
offset = {0.25, 0, 0};
Bvec = {Blue, Vec[{O+ offset, 0.75ez+ offset} ], T["§ = B e;", 0.85ez+ offset]};

kVec =

{Red, Vvec[{0, ©.75{0.1, 1, 1}}1, T[“R’ = ke +kye, +k.e; ", 0.85{0.1, 1, 1}]};
axes = {Gray, Thick, Line[{O, ex}], Line[{O, ey}],

Line[ {0, ez}], T["x", 1.1ex], T["y", 1.1ey], T["z", 1.1ez]};

G[{axes, Bvec, kVec}, Boxed - False,

PlotRange -» {{-0.1, 1.1}, {-0.1, 1.1}, {0, 1.1}},

ViewPoint -» {2, 2, 1}, ImageSize » {350, 350}, SphericalRegion - True,
PlotLabel - Stl["Equilibrium plasma geometry“]]]

Equilibrium plasma geometry

-
k = kxex+kye, +kz e,
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